Schiefkörper — Ein Schiefkörper oder Divisionsring ist eine Menge mit zwei zweistelligen Verknüpfungen „+“ und „·“, die alle Eigenschaften eines Körpers besitzt, außer dass die Multiplikation nicht notwendigerweise kommutativ ist. Ein Schiefkörper ist somit ein … Deutsch Wikipedia
Quaternionen-Schiefkörper — Gedenktafel an der Broom Bridge in Dublin, wo William Rowan Hamilton die Multiplikationsregeln im Oktober 1843 spontan in den Stein ritzte. Die Quaternionen (von lat. quaternio „Vierheit“) sind eine Erweiterung der reellen Zahlen, ähnlich den… … Deutsch Wikipedia
Affine Translationsebene — Als affine Translationsebene oder kurz Translationsebene wird in der synthetischen Geometrie eine affine Ebene dann bezeichnet, wenn ihre Translationsgruppe scharf einfach transitiv auf ihr operiert und sie daher weitgehend durch diese Gruppe… … Deutsch Wikipedia
Körpertheorie — Körper berührt die Spezialgebiete Mathematik Abstrakte Algebra Gruppentheorie Zahlentheorie Lineare Algebra Analysis ist Spezialfall von additive … Deutsch Wikipedia
Ternärkörper — Ein Ternärkörper ist eine algebraische Struktur, die in der synthetischen Geometrie als Koordinatenbereich einer beliebigen affinen Ebene dient. Als Menge besteht der Ternärkörper dabei aus den Punkten einer fest gewählten Geraden der Ebene,… … Deutsch Wikipedia
Alternativkörper — Der Begriff Alternativkörper ist eine Verallgemeinerung des algebraischen Körperbegriffs der Mathematik. Bei der Definition des Alternativkörpers verzichtet man auf das Kommutativgesetz und das Assoziativgesetz für die Multiplikation. Stattdessen … Deutsch Wikipedia
Körper (Algebra) — Ein Körper ist im mathematischen Teilgebiet der Algebra eine ausgezeichnete algebraische Struktur, in der die Addition, Subtraktion, Multiplikation und Division wie bei den „normalen“ reellen Zahlen durchgeführt werden können. Die Bezeichnung… … Deutsch Wikipedia
Divisionsring — Ein Schiefkörper oder Divisionsring ist eine Menge mit zwei zweistelligen Verknüpfungen „+“ und „·“, die alle Eigenschaften eines Körpers besitzt, außer dass die Multiplikation nicht notwendigerweise kommutativ ist. Ein Schiefkörper ist somit ein … Deutsch Wikipedia
Kommutativer Ring — Ring berührt die Spezialgebiete Mathematik Abstrakte Algebra Gruppentheorie Zahlentheorie ist Spezialfall von additive Abelsche Gruppe multiplikative Halbgruppe … Deutsch Wikipedia
Kommutativer Ringe — Ring berührt die Spezialgebiete Mathematik Abstrakte Algebra Gruppentheorie Zahlentheorie ist Spezialfall von additive Abelsche Gruppe multiplikative Halbgruppe … Deutsch Wikipedia